

Neutrinos and gamma rays from beta decays in an active galactic nucleus NGC 1068 jet

Koichiro Yasuda (UCLA)

Based on the collaboration work with

Alexander Kusenko (UCLA, Kavli IPMU), Yoshiyuki Inoue (Osaka U, iTHEMS, Kavli IPMU) & Nobuyuki Sakai (Osaka U)

Particle Astrophysics and Cosmology Including Fundamental InteraCtions (PACIFIC) 2024 - Mo'orea, French Polynesia

NGC 1068

Big Puzzles from IceCube

- Neutrino point sources
- \rightarrow active galaxy NGC 1068
- → Jet & Disk \Rightarrow gamma rays & $\nu's$
- TeV Neutrino power
- $\rightarrow \sim 10^{42} \text{ erg/sec}$
- GeV-TeV gamma rays
- → Fermi LAT & MAGIC data
- \rightarrow significantly less than *v*'s

[Abbasi et al. (2022) from IceCube collaboration]

Possible sources for neutrinos

$> pp/p\gamma \text{ interactions}$ $\rightarrow \text{ series of pion decays}$

 $\pi^0 \rightarrow 2\gamma, \quad \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \overline{\nu_\mu} + \nu_\mu$ [Eichmann et al. (2022), Inoue et al. (2022), Murase et al. (2022) etc] $\rightarrow Leptonic interactions$ $\rightarrow \mu + \overline{\mu} pair creation makes <math>\nu_\mu$'s [Bhattacharjee, Sigl (2000), Hooper, Plant (2023) etc]

> AGN disk-corona model

→ Hypothetical Central energetic engine [Zdziarski (1986), Kalashev et al. (2015) etc]

(still some uncertainty exists [Inoue Takasao Khangulyan (2024)])

> We pose another scenario without corona!

Summary of our work

- Neutrino emissions from active galaxy
- \rightarrow Photodisintegration of ⁴He
- $\rightarrow \beta$ decay of neutrons
- Gamma ray emissions
- $\rightarrow \beta$ decay electrons + Bethe-Heitler pairs
- → Inverse Compton scattering of disk photons + Synchrotron
- Magnetic field strength
- \rightarrow Required strength from GeV data is consistent with ALMA survey
- Neutrino flavor ratio study can probe this scenario

Our Disk & Jet Models

- standard disk model (No corona)
- $\rightarrow L_{bol} \sim (0.4 4.7) \times 10^{45} \ erg/sec \ \text{[Pfuhl et al. from GRAVITY]}$
- > maximum jet power
- $\textbf{\rightarrow } L_{jet} \approx \textbf{10} \times L_{bol} \sim 10^{46} \ erg/sec$

[Gallimore et al. (2004)]

Our Disk & Jet Models

- standard disk model (No corona)
- $\rightarrow L_{bol} \sim (0.4-4.7) \times 10^{45} \ erg/sec \ \text{[Pfuhl et al. from GRAVITY]}$
- > maximum jet power
- $\rightarrow L_{jet} \approx 10 \times L_{bol} \sim 10^{46} \ erg/sec$
- emission radius
- \rightarrow set R_{emission}= 0.8 pc (before molecular cloud)
- magnetic field
- \rightarrow ALMA implies ~ 100 μ G at 10 pc
- \rightarrow It can go as high as $\sim 0.1-1.0$ G at 1 pc scale

[Gallimore et al. (2004)]

Disk photons

- standard disk photons
- \rightarrow geometrically thin
- \rightarrow optically thick
- temperature gradient
- \rightarrow multicolor blackbody radiation
- \rightarrow peaks around UV
- IR photons from dust torus
- \rightarrow simple blackbody with $T \sim 10^3 \, {\rm K}$
- $\rightarrow L_{IR} = 10^{44} \text{ erg/sec}$

Protons & ⁴He in the Jet

Photodisintegration of ⁴He

Interections of the Jet Protons

Bethe-Heitler pair production $p + \gamma \rightarrow p + e^{+} + e^{-}$ $p + \gamma \rightarrow p + \pi^{0} \text{ or } n + \pi^{+}$ $\pi^{0} \rightarrow 2\gamma$

$$\pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \overline{\nu_\mu} + \nu_\mu$$

Optical Depths

BH: $L_{disk} = 10^{45}$ erg/s, $R_{iet} = 0.8$ pc

 $\gamma\gamma$: $L_{disk} = 10^{45}$ erg/s, $R_{iet} = 0.8$ pc

 4 He(γ , n): $L_{disk} = 10^{45}$ erg/s, $R_{iet} = 0.8$ pc

photo π : $L_{disk} = 10^{45}$ erg/s, $R_{iet} = 0.8$ pc

108

 10^{10}

 10^{12}

Mean free path

Particle Astrophysics and Cosmology Including Fundamental InteraCtions (PACIFIC) 2024

 10^{2}

 10^{0}

 10^{4}

106

Energy GeV

Gamma rays from electrons

Inverse Compton (IC)

- \rightarrow electrons upscatter soft photons
- \rightarrow suppressed at higher energies (Klein-Nishina effect)
- Synchrotron
- \rightarrow spiral emission by B field
- ▶ naima
- \rightarrow Open python package
- \rightarrow relativistic particle distribution
- \rightarrow Synchrotron + IC

- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data

Neutrino emissions

- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data
- \succ Electrons from β decay

E [GeV]

protons

Neutrino emissions

- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data
- **Electrons from** β decay, BH

Electrons from He

. . . .

MAGIC

- protons
 …… Electrons from He
 IceCube

 Heliums
 --- e[±] from BH
 ➡ MAGIC

 Neutrinos from He
 e⁺ from photopion
 ➡ Fermi-LAT
- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data
- **Electrons from** β decay, BH & $p\gamma$

- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data
- **>** Electrons from β decay, BH & $p\gamma$
- > Gamma ray emissions from $e^{\pm'}s$
- \rightarrow Inverse Compton emission

- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data
- > Electrons from β decay, BH & $p\gamma$
- > Gamma ray emissions from $e^{\pm'}s$
- \rightarrow Inverse Compton emission
- \rightarrow Synchrotron emissions

- \rightarrow Photodisintegration of ⁴He
- \rightarrow Compatible with IceCube data
- > Electrons from β decay, BH & $p\gamma$
- > Gamma ray emissions from $e^{\pm'}s$
- \rightarrow Inverse Compton emission
- \rightarrow Synchrotron emissions
- Magnetic field strength
- \rightarrow Fermi GeV data is explained by B~0.4 G

Outlooks

Initial neutrino flavor ratio

- $\rightarrow \nu_e : \nu_\mu : \nu_\tau = 1 : 0 : 0$ (β decay)
- $\leftrightarrow v_e : v_\mu : v_\tau = 1 : 2 : 0$ (photopion)
- IceCube flavor study
- → Observed/Oscillated flavor ratio can probe our scenario [Bustamante, Ahlers (2019)]
- \rightarrow Simple QM time evolution estimate

 $u_e: \nu_\mu: \nu_\tau \simeq 5: 2: 2$ (β decay)

 $\leftrightarrow \nu_e : \nu_\mu : \nu_\tau \simeq 1 : 1 : 1$ (photopion)

≻ Precise jet/torus structure
 → to explain GeV-TeV wiggles

Another application of CR photodisintegration

[Kusenko, Voloshin (2011)]

> Excitation & deexcitation of escaped CR (Fe etc...) with CMB

Another application of CR photodisintegration

Excitation & deexcitation of escaped CR (Fe etc...) with CMB
 Possible explanation of Cen A gamma ray "Shoulder"

Conclusion

- > Neutrino emissions
- \rightarrow Photodisintegration of ⁴He
- $\rightarrow \beta$ decay of neutrons
- Gamma ray emissions
- → IC & synchrotron of β decay electrons + Bethe-Heitler pairs
- Magnetic field strength
- \rightarrow Required strength from GeV data is consistent with ALMA survey
- Neutrino flavor ratio study can probe this scenario